Definitions NuprlPrimitives Sections NuprlLIB Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
assertDef b == if b True else False fi
Thm* b:b  Prop
kleene_minimizeDef mu(f) == if f(0) 0 else 1+mu(x.f(1+x)) fi  (recursive)
Thm* mu  {f:()| x:f(x) }
natDef  == {i:| 0i }
Thm*   Type
nequalDef a  b  T == a = b  T
Thm* A:Type, x,y:A. (x  y Prop
notDef A == A  False
Thm* A:Prop. (A Prop

About:
boolifthenelseassertintnatural_numberaddset
lambdaapplyfunctionrecursive_def_noticeuniverseequal
memberpropimpliesfalsetrueallexists
!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions NuprlPrimitives Sections NuprlLIB Doc