Definitions NuprlPrimitives Sections NuprlLIB Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
natDef  == {i:| 0i }
Thm*   Type
leDef AB == B<A
Thm* i,j:. (ij Prop
nequalDef a  b  T == a = b  T
Thm* A:Type, x,y:A. (x  y Prop
sfa_doc_factorial2Def x! == if x=0 1 else x(x-2)! fi  (recursive)
Thm* x:{x:| (x rem 2) = 0 }. x!  

About:
ifthenelseintnatural_numbersubtractmultiplyremainderless_thanset
recursive_def_noticeuniverseequalmemberpropall!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions NuprlPrimitives Sections NuprlLIB Doc