| Some definitions of interest. |
|
nat | Def == {i:| 0i } |
| | Thm* Type |
|
le | Def AB == B<A |
| | Thm* i,j:. (ij) Prop |
|
nequal | Def a b T == a = b T |
| | Thm* A:Type, x,y:A. (x y) Prop |
|
sfa_doc_factorial2 | Def x! == if x=0 1 else x(x-2)! fi (recursive) |
| | Thm* x:{x:| (x rem 2) = 0 }. x! |