Definitions NuprlPrimitives Sections NuprlLIB Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
natDef  == {i:| 0i }
Thm*   Type
nequalDef a  b  T == a = b  T
Thm* A:Type, x,y:A. (x  y Prop
sfa_doc_ntupleDef A^n == if n=0 Unit ; n=1 A else A(A^(n-1)) fi  (recursive)
Thm* A:Type, n:. (A^n Type

About:
productifthenelseunitintnatural_numbersubtractset
recursive_def_noticeuniverseequalmemberpropall
!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions NuprlPrimitives Sections NuprlLIB Doc