Definitions NuprlPrimitives Sections NuprlLIB Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
nat_plusDef  == {i:| 0<i }
Thm*   Type
nequalDef a  b  T == a = b  T
Thm* A:Type, x,y:A. (x  y Prop
sfa_doc_sexprDef Sexpr(A) == rec(T.(TT)+A)
Thm* A:Type. Sexpr(A Type
sfa_doc_sexpr_carDef sexprCar(s) == Case of s :  Inj(x Inj(x) ; Cons(s1;s2 s1
Thm* A:Type, s:Sexpr(A). sexprCar(s Sexpr(A)
sfa_doc_sexpr_consDef Cons(s1;s2) == inl(<s1,s2>)
Thm* A:Type, s1,s2:Sexpr(A). Cons(s1;s2 Sexpr(A)
sfa_doc_sexpr_injDef Inj(a) == inr(a)
Thm* A:Type, a:A. Inj(a Sexpr(A)
sfa_doc_sexpr_sizeDef Size(s) == Case of s :  Inj(x 1 ; Cons(s1;s2 Size(s1)+Size(s2)
Def (recursive)
Thm* A:Type, s:Sexpr(A). Size(s 

About:
pairproductintnatural_numberaddless_thanunioninlinrset
recursive_def_noticerecuniverseequalmemberpropall
!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions NuprlPrimitives Sections NuprlLIB Doc