| Some definitions of interest. |
|
nat_plus | Def == {i:| 0<i } |
| | Thm* Type |
|
nequal | Def a b T == a = b T |
| | Thm* A:Type, x,y:A. (x y) Prop |
|
sfa_doc_sexpr | Def Sexpr(A) == rec(T.(TT)+A) |
| | Thm* A:Type. Sexpr(A) Type |
|
sfa_doc_sexpr_cdr | Def sexprCdr(s) == Case of s : Inj(x) Inj(x) ; Cons(s1;s2) s2 |
| | Thm* A:Type, s:Sexpr(A). sexprCdr(s) Sexpr(A) |
|
sfa_doc_sexpr_size | Def Size(s) == Case of s : Inj(x) 1 ; Cons(s1;s2) Size(s1)+Size(s2)
Def (recursive) |
| | Thm* A:Type, s:Sexpr(A). Size(s) |