| Some definitions of interest. | |
| nat_plus |   == {i:  | 0<i } | 
|     Type | |
| nequal |  b  T ==  a = b  T | 
|  A:Type, x,y:A. (x  y)  Prop | |
| sfa_doc_sexpr |  T)+A) | 
|  A:Type. Sexpr(A)  Type | |
| sfa_doc_sexpr_cdr |  Inj(x) ; Cons(s1;s2)  s2 | 
|  A:Type, s:Sexpr(A). sexprCdr(s)  Sexpr(A) | |
| sfa_doc_sexpr_size |  1 ; Cons(s1;s2)  Size(s1)+Size(s2) Def (recursive) | 
|  A:Type, s:Sexpr(A). Size(s)     | 
About:
|  |  |  |  |  |  |  |  | 
|  |  |  |  |  |  |  |