Definitions NuprlPrimitives Sections NuprlLIB Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
sfa_doc_sexprDef Sexpr(A) == rec(T.(TT)+A)
Thm* A:Type. Sexpr(A Type
sfa_doc_sexpr_reverseDef Reverse(e)
Def == Case of e
Def == CaInj(x Inj(x)
Def == CaCons(s1;s2 Cons(Reverse(s2);Reverse(s1))
Def (recursive)
Thm* A:Type, e:Sexpr(A). Reverse(e Sexpr(A)
sfa_doc_sexpr_consDef Cons(s1;s2) == inl(<s1,s2>)
Thm* A:Type, s1,s2:Sexpr(A). Cons(s1;s2 Sexpr(A)
sfa_doc_sexpr_injDef Inj(a) == inr(a)
Thm* A:Type, a:A. Inj(a Sexpr(A)

About:
pairproductunioninlinrrecursive_def_notice
recuniversememberall!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions NuprlPrimitives Sections NuprlLIB Doc