| Some definitions of interest. |
|
sfa_doc_sexpr | Def Sexpr(A) == rec(T.(TT)+A) |
| | Thm* A:Type. Sexpr(A) Type |
|
sfa_doc_sexpr_reverse | Def Reverse(e)
Def == Case of e
Def == CaInj(x) Inj(x)
Def == CaCons(s1;s2) Cons(Reverse(s2);Reverse(s1))
Def (recursive) |
| | Thm* A:Type, e:Sexpr(A). Reverse(e) Sexpr(A) |
|
sfa_doc_sexpr_cons | Def Cons(s1;s2) == inl(<s1,s2>) |
| | Thm* A:Type, s1,s2:Sexpr(A). Cons(s1;s2) Sexpr(A) |
|
sfa_doc_sexpr_inj | Def Inj(a) == inr(a) |
| | Thm* A:Type, a:A. Inj(a) Sexpr(A) |