Definitions
NuprlPrimitives
Sections
NuprlLIB
Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
sfa_doc_sexpr
Def
Sexpr(
A
) == rec(
T
.(
T
T
)+
A
)
Thm*
A
:Type. Sexpr(
A
)
Type
sfa_doc_sexpr_reverse
Def
Reverse(
e
)
Def
== Case of
e
Def == Ca
Inj(
x
)
Inj(
x
)
Def == Ca
Cons(
s1
;
s2
)
Cons(Reverse(
s2
);Reverse(
s1
))
Def
(recursive)
Thm*
A
:Type,
e
:Sexpr(
A
). Reverse(
e
)
Sexpr(
A
)
sfa_doc_sexpr_inj
Def
Inj(
a
) == inr(
a
)
Thm*
A
:Type,
a
:
A
. Inj(
a
)
Sexpr(
A
)
About:
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Definitions
NuprlPrimitives
Sections
NuprlLIB
Doc