| Some definitions of interest. |
|
sfa_doc_sequence_rel | Def i steps of e from a == if i=0 a else e(i-1 steps of e from a) fi
Def (recursive) |
| | Thm* A:Type, a:A, e:(AA), i:. i steps of e from a A |
|
eq_int | Def i=j == if i=j true ; false fi |
| | Thm* i,j:. (i=j) |
|
nat | Def == {i:| 0i } |
| | Thm* Type |
|
nequal | Def a b T == a = b T |
| | Thm* A:Type, x,y:A. (x y) Prop |