Definitions NuprlPrimitives Sections NuprlLIB Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
natDef  == {i:| 0i }
Thm*   Type
nequalDef a  b  T == a = b  T
Thm* A:Type, x,y:A. (x  y Prop
sfa_doc_sequence_relDef i steps of e from a == if i=0 a else e(i-1 steps of e from a) fi
Def (recursive)
Thm* A:Type, a:Ae:(AA), i:i steps of e from a  A

About:
ifthenelseintnatural_numbersubtractsetapplyfunction
recursive_def_noticeuniverseequalmemberpropall!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions NuprlPrimitives Sections NuprlLIB Doc