| Some definitions of interest. |
|
assert | Def b == if b True else False fi |
| | Thm* b:. b Prop |
|
sfa_doc_factorial | Def x! == if x=0 1 else x(x-1)! fi (recursive) |
| | Thm* x:. x! |
|
sfa_doc_factorial2 | Def x! == if x=0 1 else x(x-2)! fi (recursive) |
| | Thm* x:{x:| (x rem 2) = 0 }. x! |
|
sfa_doc_ntuple | Def A^n == if n=0 Unit ; n=1 A else A(A^(n-1)) fi (recursive) |
| | Thm* A:Type, n:. (A^n) Type |
|
eq_int | Def i=j == if i=j true ; false fi |
| | Thm* i,j:. (i=j) |
|
sfa_doc_ntuple_contains | Def u in X: A^n. P(u)
Def == n = 1 & P(X) n2 & (X/a,rest. P(a) ( u in rest: A^(n-1). P(u)))
Def (recursive) |
| | Thm* A:Type, P:(AProp), n:, X:(A^n). ( u in X: A^n. P(u)) Prop |
|
ge | Def ij == ji |
| | Thm* i,j:. (ij) Prop |
|
kleene_minimize | Def mu(f) == if f(0) 0 else 1+mu(x.f(1+x)) fi (recursive) |
| | Thm* mu {f:()| x:. f(x) } |
|
nat | Def == {i:| 0i } |
| | Thm* Type |
|
not | Def A == A False |
| | Thm* A:Prop. (A) Prop |