| Who Cites sfa doc greater list bound? |
|
sfa_doc_greater_list_bound | Def y greater-bounds x == i:||x||. x[i]<y |
| | Thm* x: List, y:. y greater-bounds x Prop |
|
select | Def l[i] == hd(nth_tl(i;l)) |
| | Thm* A:Type, l:A List, n:. 0n n<||l|| l[n] A |
|
length | Def ||as|| == Case of as; nil 0 ; a.as' ||as'||+1 (recursive) |
| | Thm* A:Type, l:A List. ||l|| |
| | Thm* ||nil|| |
|
int_seg | Def {i..j} == {k:| i k < j } |
| | Thm* m,n:. {m..n} Type |
|
nth_tl | Def nth_tl(n;as) == if n0 as else nth_tl(n-1;tl(as)) fi (recursive) |
| | Thm* A:Type, as:A List, i:. nth_tl(i;as) A List |
|
hd | Def hd(l) == Case of l; nil "?" ; h.t h |
| | Thm* A:Type, l:A List. ||l||1 hd(l) A |
|
lelt | Def i j < k == ij & j<k |
|
tl | Def tl(l) == Case of l; nil nil ; h.t t |
| | Thm* A:Type, l:A List. tl(l) A List |
|
le_int | Def ij == j<i |
| | Thm* i,j:. (ij) |
|
le | Def AB == B<A |
| | Thm* i,j:. (ij) Prop |
|
lt_int | Def i<j == if i<j true ; false fi |
| | Thm* i,j:. (i<j) |
|
bnot | Def b == if b false else true fi |
| | Thm* b:. b |
|
not | Def A == A False |
| | Thm* A:Prop. (A) Prop |