SimpleMulFacts Sections DiscrMathExt Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Def  P  Q == PQ

is mentioned by

Thm*  a,b:. prime(ab ab = a  ab = b[prime_among_factors]
Thm*  x:{2...}, y:. prime(y x | y  x = y  [prime_nat_divby_self_only]
Thm*  b:. prime(b b | 1[no_prime_divs_one_b]
Thm*  b:b | 1  prime(b)[no_prime_divs_one]
Thm*  b:b | 1  prime(b)[no_nat_prime_divs_one]
Thm*  x:{2...}. prime(x (i,j:{2..x}. x = ij & prime(i))[composite_with_prime_factor]
Thm*  x:. prime(x (i:{2..x}. i | x)[natprime_nondivs]
Thm*  x:. prime(x 2x[natprimes_lb]
Thm*  x:y,z:x = yz  (x  z) = y[div_inverts_nat_mul2]
Thm*  x,y:z:x = yz  (x  z) = y[div_inverts_nat_mul]
Thm*  b:b | 1  b = 1[only_one_nat_divs_one]
Thm*  k:i:{2..k}, j:ij = k  2  j < k & i<k[factors_smaller2]
Thm*  i,j:. 0<ij  iij & jij[pos_mul_arg_boundsNat2]
Thm*  x,y:z:x<y  x<yz[lt_mul_rt_by_pos]
Thm*  k:n:x,y:kx+n = ky  xy[factor_bound]
Thm*  x,y:z:xy  xyz[le_mul_rt_by_pos]
Thm*  a,b:m,n:m = n  (ma = nb  a = b)[mul_cancel_in_eq2]
Thm*  a,b,c,d:a = b  c = d  ac = db  [mul_nat_com]

In prior sections: core well fnd int 1 bool 1 rel 1 quot 1 LogicSupplement int 2 union num thy 1

Try larger context: DiscrMathExt IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

SimpleMulFacts Sections DiscrMathExt Doc