SimpleMulFacts Sections DiscrMathExt Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Def   == {i:| 0i }

is mentioned by

Thm*  a,b:. prime(ab ab = a  ab = b[prime_among_factors]
Thm*  x:{2...}, y:. prime(y x | y  x = y  [prime_nat_divby_self_only]
Thm*  b:. prime(b b | 1[no_prime_divs_one_b]
Thm*  b:b | 1  prime(b)[no_nat_prime_divs_one]
Thm*  x:prime(x x<2  (i,j:{2..x}. x = ij)[nonprime_nat]
Thm*  x:. prime(x (i:{2..x}. i | x)[natprime_nondivs]
Thm*  x:. prime(x 2x[natprimes_lb]
Thm*  x:. prime(x 2x & (i:{2..x}. i | x)[prime_nat]
Thm*  x:y,z:x = yz  (x  z) = y[div_inverts_nat_mul2]
Thm*  x,y:z:x = yz  (x  z) = y[div_inverts_nat_mul]
Thm*  b:b | 1  b = 1[only_one_nat_divs_one]
Thm*  a,b:a | b  (c:b = ac)[divides_def_on_nat]
Thm*  i,j:. 0<ij  iij & jij[pos_mul_arg_boundsNat2]
Thm*  a,b:. 0<ab  0<a & 0<b[pos_mul_arg_boundsNat]
Thm*  x,y:z:x<y  x<yz[lt_mul_rt_by_pos]
Thm*  k:n:x,y:kx+n = ky  xy[factor_bound]
Thm*  x,y:z:xy  xyz[le_mul_rt_by_pos]
Thm*  a,b:n:nanb  ab[nat_factor_cancel_rw]
Thm*  a,b,c,d:a = b  c = d  ac = db  [mul_nat_com]
Thm*  x,y:xy = 1  x = 1 & y = 1[nat_prod_one_iff_factors_one]
Def  Prime == {x:| prime(x) }[prime_nats]

In prior sections: int 1 bool 1 int 2 num thy 1

Try larger context: DiscrMathExt IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

SimpleMulFacts Sections DiscrMathExt Doc