| Some definitions of interest. |
|
assert | Def b == if b True else False fi |
| | Thm* b: . b Prop |
|
decidable | Def Dec(P) == P P |
| | Thm* A:Prop. Dec(A) Prop |
|
iff | Def P  Q == (P  Q) & (P  Q) |
| | Thm* A,B:Prop. (A  B) Prop |
|
inhabited_uniquely | Def ! A ==  {x:A| y:A. x = y } |
|
prime | Def prime(a) == a = 0 & (a ~ 1) & ( b,c: . a | b c  a | b a | c) |
| | Thm* a: . prime(a) Prop |