| Some definitions of interest. |
|
assert | Def b == if b True else False fi |
| | Thm* b:. b Prop |
|
decidable | Def Dec(P) == P P |
| | Thm* A:Prop. Dec(A) Prop |
|
iff | Def P Q == (P Q) & (P Q) |
| | Thm* A,B:Prop. (A B) Prop |
|
inhabited_uniquely | Def !A == {x:A| y:A. x = y } |
|
prime | Def prime(a) == a = 0 & (a ~ 1) & (b,c:. a | bc a | b a | c) |
| | Thm* a:. prime(a) Prop |