(5steps total) PrintForm Definitions Lemmas SimpleMulFacts Sections DiscrMathExt Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
At: div inverts nat mul 1 1

1. x : 
2. y : 
3. z : 
4. x = yz
5. x = (x  z)z+(x rem z)
6. (x rem z z
  (x  z) = y


By: Inst: Thm*  k:q1,q2:r1,r2:kq1k+r1 = q2k+r2  q1 = q2 & r1 = r2
Using:[z | y | x  z | 0 | x rem z] ...w


Generated subgoals:

1   yz+0 = (x  z)z+(x rem z)
Auto
2 7. y = (x  z) & 0 = (x rem z)
  (x  z) = y

Auto

About:
intnatural_numberaddmultiplydivideremainderequalmemberimpliesandall
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

(5steps total) PrintForm Definitions Lemmas SimpleMulFacts Sections DiscrMathExt Doc