action sets Sections AutomataTheory Doc

Def ||as|| == Case of as; nil 0 ; a.as' ||as'||+1 (recursive)

Thm* n:, Alph:Type, S:ActionSet(Alph), s,f:S.car. #(S.car)=n (l:Alph*. (S:ls) = f) (l:Alph*. ||l||n & (S:ls) = f) pump_thm_cor

Thm* S:ActionSet(Alph), N:, s:S.car. #(S.car)=N (A:Alph*. N < ||A|| (a,b,c:Alph*. 0 < ||b|| & A = ((a @ b) @ c) & (k:. (S:(a @ (bk)) @ cs) = (S:As)))) pump_theorem

In prior sections: list 1 finite sets list 3 autom