PrintForm Definitions action sets Sections AutomataTheory Doc

At: pump theorem


Alph:Type, S:ActionSet(Alph), N:, s:S.car. #(S.car)=N (A:Alph*. N < ||A|| (a,b,c:Alph*. 0 < ||b|| & A = ((a @ b) @ c) & (k:. (S:(a @ (bk)) @ cs) = (S:As))))

By: GenUnivCD

Generated subgoal:

11. Alph: Type
2. S: ActionSet(Alph)
3. N:
4. s: S.car
5. #(S.car)=N
6. A: Alph*
7. N < ||A||
a,b,c:Alph*. 0 < ||b|| & A = ((a @ b) @ c) & (k:. (S:(a @ (bk)) @ cs) = (S:As))


About:
alluniverseimplieslistless_than
existsandnatural_numberequal