action sets Sections AutomataTheory Doc

Def (Ln) == if n=0 nil else (Ln-1) @ L fi (recursive)

Thm* e:, L:*, n:. ||e:(Ln)|| = n||e:L|| counter_lpower

Thm* S:ActionSet(Alph), N:, s:S.car. #(S.car)=N (A:Alph*. N < ||A|| (a,b,c:Alph*. 0 < ||b|| & A = ((a @ b) @ c) & (k:. (S:(a @ (bk)) @ cs) = (S:As)))) pump_theorem

Thm* L:Alph*, n:. (Ln) = if n=0 nil else L @ (Ln-1) fi lpower_alt