 n) == if n=
n) == if n= 0
0 nil else (L
 nil else (L n-1) @ L fi  (recursive)
n-1) @ L fi  (recursive)
 Thm*  e:
e: , L:
, L: *, n:
*, n: . ||e:(L
. ||e:(L n)|| = n
n)|| = n ||e:L||
||e:L||  
  counter_lpower
    counter_lpower
 Thm*  S:ActionSet(Alph), N:
S:ActionSet(Alph), N:
 , s:S.car.
 #(S.car)=N
, s:S.car.
 #(S.car)=N  
 (
 
 ( A:Alph*. 
 N < ||A||
A:Alph*. 
 N < ||A|| 
 (
 
 ( a,b,c:Alph*.
 0 < ||b||  &  A = ((a @ b) @ c)  &  (
a,b,c:Alph*.
 0 < ||b||  &  A = ((a @ b) @ c)  &  ( k:
k: . (S:(a @ (b
. (S:(a @ (b k)) @ c
k)) @ c s) = (S:A
s) = (S:A s))))
 
 pump_theorem
s))))
 
 pump_theorem
 Thm*  L:Alph*, n:
L:Alph*, n: . (L
. (L n) = if n=
n) = if n= 0
0 nil else L @ (L
 nil else L @ (L n-1) fi    lpower_alt
n-1) fi    lpower_alt