action sets Sections AutomataTheory Doc

Def (S:Ls) == if null(L) s else S.act(hd(L),(S:tl(L)s)) fi (recursive)

Thm* S:ActionSet(), s,q:S.car. (n:. #(S.car)=n ) & (k:. (S:n0n1(k)s) = q) (L:*. (S:Ls) = q & (k:. L = n0n1(k))) n0n1_irregular

Thm* S:ActionSet(T), s:S.car, tl1,tl2:T*. (S:tl1 @ tl2s) = (S:tl1(S:tl2s)) action_append

Thm* n:, Alph:Type, S:ActionSet(Alph), s,f:S.car. #(S.car)=n (l:Alph*. (S:ls) = f) (l:Alph*. ||l||n & (S:ls) = f) pump_thm_cor

Thm* S:ActionSet(Alph), N:, s:S.car. #(S.car)=N (A:Alph*. N < ||A|| (a,b,c:Alph*. 0 < ||b|| & A = ((a @ b) @ c) & (k:. (S:(a @ (bk)) @ cs) = (S:As)))) pump_theorem

Thm* S:ActionSet(Alph), s:S.car, L1,L2,L:Alph*. (S:L1s) = (S:L2s) (S:L @ L1s) = (S:L @ L2s) maction_lemma