Thm*
S:ActionSet(
), s,q:S.car.
(
n:![]()
. #(S.car)=n ) & (
k:
. (S:n0n1(k)
s) = q) ![]()
(
L:
*. (S:L
s) = q & (
k:
.
L = n0n1(k)))
n0n1_irregular
Thm*
e:
, L:
*, n:
. ||e:(L
n)|| = n
||e:L||
counter_lpower
Thm*
e:
, L,M:
*. ||e:L @ M|| = ||e:L||+||e:M||
counter_append
Thm*
e:
. ||e:nil|| = 0
counter_of_nil
Thm*
n:
, L:
*. ||n:L||
el_counter_wf
Thm*
n:
. n0n1(n)
* n0n1_wf
Thm*
S:ActionSet(Alph), N:![]()
, s:S.car.
#(S.car)=N ![]()
(
A:Alph*.
N < ||A|| ![]()
(
a,b,c:Alph*.
0 < ||b|| & A = ((a @ b) @ c) & (
k:
. (S:(a @ (b
k)) @ c
s) = (S:A
s))))
pump_theorem
Thm*
L:Alph*, n:
. (L
n) = if n=
0
nil else L @ (L
n-1) fi lpower_alt
Thm*
Alph:Type, L:Alph*, n:
. (L
n)
Alph* lpower_wf
Thm* (0)! = 1
ex1_of_factorial
Thm*
n:
. (n)!
factorial_wf
In prior sections: int 1 bool 1 int 2 list 1 finite sets list 3 autom