| Some definitions of interest. |
|
fib | Def fib(n) == if n=0 n=1 1 else fib(n-1)+fib(n-2) fi (recursive) |
| | Thm* n:. fib(n) |
|
bor | Def p q == if p true else q fi |
| | Thm* p,q:. (p q) |
|
coprime | Def CoPrime(a,b) == GCD(a;b;1) |
| | Thm* a,b:. CoPrime(a,b) Prop |
|
eq_int | Def i=j == if i=j true ; false fi |
| | Thm* i,j:. (i=j) |
|
iff | Def P Q == (P Q) & (P Q) |
| | Thm* A,B:Prop. (A B) Prop |
|
nat | Def == {i:| 0i } |
| | Thm* Type |