Definitions NumThyExamples Sections NuprlLIB Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
fibDef fib(n) == if n= n=1 1 else fib(n-1)+fib(n-2) fi  (recursive)
Thm* n:. fib(n 
borDef p  q == if p true else q fi
Thm* p,q:. (p  q 
coprimeDef CoPrime(a,b) == GCD(a;b;1)
Thm* a,b:. CoPrime(a,b Prop
eq_intDef i=j == if i=j true ; false fi
Thm* i,j:. (i=j 
iffDef P  Q == (P  Q) & (P  Q)
Thm* A,B:Prop. (A  B Prop
natDef  == {i:| 0i }
Thm*   Type

About:
boolbfalsebtrueifthenelseintnatural_numberadd
subtractint_eqsetrecursive_def_notice
universememberpropimpliesandall!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions NumThyExamples Sections NuprlLIB Doc