| Some definitions of interest. |
|
coprime | Def CoPrime(a,b) == GCD(a;b;1) |
| | Thm* a,b:. CoPrime(a,b) Prop |
|
fib | Def fib(n) == if n=0 n=1 1 else fib(n-1)+fib(n-2) fi (recursive) |
| | Thm* n:. fib(n) |
|
gcd_p | Def GCD(a;b;y) == y | a & y | b & (z:. z | a & z | b z | y) |
| | Thm* a,b,y:. GCD(a;b;y) Prop |
|
int_seg | Def {i..j} == {k:| i k < j } |
| | Thm* m,n:. {m..n} Type |
|
int_upper | Def {i...} == {j:| ij } |
| | Thm* n:. {n...} Type |
|
nat | Def == {i:| 0i } |
| | Thm* Type |
|
nat_plus | Def == {i:| 0<i } |
| | Thm* Type |