Definitions NumThyExamples Sections NuprlLIB Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
coprimeDef CoPrime(a,b) == GCD(a;b;1)
Thm* a,b:. CoPrime(a,b Prop
fibDef fib(n) == if n= n=1 1 else fib(n-1)+fib(n-2) fi  (recursive)
Thm* n:. fib(n 
gcd_pDef GCD(a;b;y) == y | a & y | b & (z:z | a & z | b  z | y)
Thm* a,b,y:. GCD(a;b;y Prop
int_segDef {i..j} == {k:i  k < j }
Thm* m,n:. {m..n Type
int_upperDef {i...} == {j:ij }
Thm* n:. {n...}  Type
natDef  == {i:| 0i }
Thm*   Type
nat_plusDef  == {i:| 0<i }
Thm*   Type

About:
ifthenelseintnatural_numberaddsubtractless_thanset
recursive_def_noticeuniversememberpropimpliesandall
!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions NumThyExamples Sections NuprlLIB Doc