auto_iso |
Def A1 A2
== f:(S1 S2).
Bij(S1; S2; f)
& ( s:S1, a:Alph. f( A1(s,a)) = A2(f(s),a))
& f(InitialState(A1)) = InitialState(A2)
& ( s:S1. FinalState(A1)(s) = FinalState(A2)(f(s)) )
Thm* Alph,S1,S2:Type, A1:Automata(Alph;S1), A2:Automata(Alph;S2). A1 A2 Prop
|
DA_act |
Def a == 1of(a)
Thm* Alph,States:Type, a:Automata(Alph;States). a States Alph States
|
DA_fin |
Def FinalState(a) == 2of(2of(a))
Thm* Alph,States:Type, a:Automata(Alph;States). FinalState(a) States  
|
DA_init |
Def InitialState(a) == 1of(2of(a))
Thm* Alph,States:Type, a:Automata(Alph;States). InitialState(a) States
|
automata |
Def Automata(Alph;States) == (States Alph States) States (States  )
Thm* Alph,States:Type{i}. Automata(Alph;States) Type{i'}
|
biject |
Def Bij(A; B; f) == Inj(A; B; f) & Surj(A; B; f)
Thm* A,B:Type, f:(A B). Bij(A; B; f) Prop
|
pi1 |
Def 1of(t) == t.1
Thm* A:Type, B:(A Type), p:a:A B(a). 1of(p) A
|
pi2 |
Def 2of(t) == t.2
Thm* A:Type, B:(A Type), p:a:A B(a). 2of(p) B(1of(p))
|
surject |
Def Surj(A; B; f) == b:B. a:A. f(a) = b
Thm* A,B:Type, f:(A B). Surj(A; B; f) Prop
|
inject |
Def Inj(A; B; f) == a1,a2:A. f(a1) = f(a2) B  a1 = a2
Thm* A,B:Type, f:(A B). Inj(A; B; f) Prop
|