automata 4 Sections AutomataTheory Doc

Def Result(DA)l == if null(l) InitialState(DA) else DA((Result(DA)tl(l)),hd(l)) fi (recursive)

Thm* Auto:Automata(Alph;St), g:((x,y:Alph*//(x LangOf(Auto)-induced Equiv y))) , c:(StAlph*). (q:St. (Result(Auto)c(q)) = q) (q:St, a:Alph. c(Auto(q,a)) = A(g)(c(q),a) x,y:Alph*//(x LangOf(Auto)-induced Equiv y)) homo_step

Thm* Auto:Automata(Alph;St), g:((x,y:Alph*//(x LangOf(Auto)-induced Equiv y))) , c:(StAlph*). (q:St. (Result(Auto)c(q)) = q) c(InitialState(Auto)) = nil x,y:Alph*//(x LangOf(Auto)-induced Equiv y) homo_init

Thm* L:LangOver(Alph), g:((x,y:Alph*//(x L-induced Equiv y))), l:Alph*. (Result(A(g))l) = l x,y:Alph*//(x L-induced Equiv y) lang_auto_compute

In prior sections: det automata