Thm*
Auto:Automata(Alph;St), g:((x,y:Alph*//(x LangOf(Auto)-induced Equiv y))![]()
![]()
)
, c:(St![]()
Alph*).
(
q:St. (Result(Auto)c(q)) = q) ![]()
(
q:St, a:Alph.
c(
Auto(q,a)) =
A(g)(c(q),a)
x,y:Alph*//(x LangOf(Auto)-induced Equiv y))
homo_step
Thm*
Auto:Automata(Alph;St), g:((x,y:Alph*//(x LangOf(Auto)-induced Equiv y))![]()
![]()
)
, c:(St![]()
Alph*).
(
q:St. (Result(Auto)c(q)) = q) ![]()
c(InitialState(Auto)) = nil
x,y:Alph*//(x LangOf(Auto)-induced Equiv y)
homo_init
Thm*
L:LangOver(Alph), g:((x,y:Alph*//(x L-induced Equiv y))![]()
![]()
), l:Alph*.
(Result(A(g))l) = l
x,y:Alph*//(x L-induced Equiv y)
lang_auto_compute
In prior sections: det automata