Thms automata 5 Sections AutomataTheory Doc

lang_rel Def L-induced Equiv(x,y) == z:A*. L(z @ x) L(z @ y)

Thm* A:Type, L:LangOver(A). L-induced Equiv A*A*Prop

append Def as @ bs == Case of as; nil bs ; a.as' a.(as' @ bs) (recursive)

Thm* T:Type, as,bs:T*. (as @ bs) T*

auto_lang Def LangOf(DA)(l) == DA(l)

Thm* Alph,St:Type, A:Automata(Alph;St). LangOf(A) LangOver(Alph)

assert Def b == if b True else False fi

Thm* b:. b Prop

automata Def Automata(Alph;States) == (StatesAlphStates)States(States)

Thm* Alph,States:Type{i}. Automata(Alph;States) Type{i'}

decidable Def Dec(P) == P P

Thm* A:Prop. Dec(A) Prop

equiv_rel Def EquivRel x,y:T. E(x;y) == Refl(T;x,y.E(x;y)) & Sym x,y:T. E(x;y) & Trans x,y:T. E(x;y)

Thm* T:Type, E:(TTProp). (EquivRel x,y:T. E(x,y)) Prop

finite Def Fin(s) == n:, f:(ns). Bij(n; s; f)

Thm* T:Type. Fin(T) Prop

iff Def P Q == (P Q) & (P Q)

Thm* A,B:Prop. (A B) Prop

int_seg Def {i..j} == {k:| i k < j }

Thm* m,n:. {m..n} Type

nat Def == {i:| 0i }

Thm* Type

lelt Def i j < k == ij & j < k

le Def AB == B < A

Thm* i,j:. ij Prop

one_one_corr Def A ~ B == f:(AB), g:(BA). InvFuns(A; B; f; g)

Thm* A,B:Type. (A ~ B) Prop

accept_list Def DA(l) == FinalState(DA)(Result(DA)l)

Thm* Alph,St:Type, A:Automata(Alph;St), l:Alph*. A(l)

not Def A == A False

Thm* A:Prop. (A) Prop

trans Def Trans x,y:T. E(x;y) == a,b,c:T. E(a;b) E(b;c) E(a;c)

Thm* T:Type, E:(TTProp). Trans x,y:T. E(x,y) Prop

sym Def Sym x,y:T. E(x;y) == a,b:T. E(a;b) E(b;a)

Thm* T:Type, E:(TTProp). Sym x,y:T. E(x,y) Prop

refl Def Refl(T;x,y.E(x;y)) == a:T. E(a;a)

Thm* T:Type, E:(TTProp). Refl(T;x,y.E(x,y)) Prop

biject Def Bij(A; B; f) == Inj(A; B; f) & Surj(A; B; f)

Thm* A,B:Type, f:(AB). Bij(A; B; f) Prop

rev_implies Def P Q == Q P

Thm* A,B:Prop. (A B) Prop

inv_funs Def InvFuns(A; B; f; g) == g o f = Id & f o g = Id

Thm* A,B:Type, f:(AB), g:(BA). InvFuns(A; B; f; g) Prop

compute_list Def Result(DA)l == if null(l) InitialState(DA) else DA((Result(DA)tl(l)),hd(l)) fi (recursive)

Thm* Alph,St:Type, A:Automata(Alph;St), l:Alph*. (Result(A)l) St

DA_fin Def FinalState(a) == 2of(2of(a))

Thm* Alph,States:Type, a:Automata(Alph;States). FinalState(a) States

surject Def Surj(A; B; f) == b:B. a:A. f(a) = b

Thm* A,B:Type, f:(AB). Surj(A; B; f) Prop

inject Def Inj(A; B; f) == a1,a2:A. f(a1) = f(a2) B a1 = a2

Thm* A,B:Type, f:(AB). Inj(A; B; f) Prop

tidentity Def Id == Id

Thm* A:Type. Id AA

compose Def (f o g)(x) == f(g(x))

Thm* A,B,C:Type, f:(BC), g:(AB). f o g AC

hd Def hd(l) == Case of l; nil "?" ; h.t h

Thm* A:Type, l:A*. ||l||1 hd(l) A

tl Def tl(l) == Case of l; nil nil ; h.t t

Thm* A:Type, l:A*. tl(l) A*

DA_act Def a == 1of(a)

Thm* Alph,States:Type, a:Automata(Alph;States). a StatesAlphStates

DA_init Def InitialState(a) == 1of(2of(a))

Thm* Alph,States:Type, a:Automata(Alph;States). InitialState(a) States

null Def null(as) == Case of as; nil true ; a.as' false

Thm* T:Type, as:T*. null(as)

Thm* null(nil)

pi2 Def 2of(t) == t.2

Thm* A:Type, B:(AType), p:a:AB(a). 2of(p) B(1of(p))

identity Def Id(x) == x

Thm* A:Type. Id AA

pi1 Def 1of(t) == t.1

Thm* A:Type, B:(AType), p:a:AB(a). 1of(p) A

About:
!abstractionspreadalluniversefunctionproductmemberapply
list_indbtruebfalselistboolniltokenimplies
natural_numberequalpropexistsrecursive_def_noticeifthenelseandfalse
less_thanintsetortrueassertcons