auto_lang |
Def LangOf(DA)(l) == DA(l)
Thm* Alph,St:Type, A:Automata(Alph;St). LangOf(A) LangOver(Alph)
|
automata |
Def Automata(Alph;States) == (States Alph States) States (States  )
Thm* Alph,States:Type{i}. Automata(Alph;States) Type{i'}
|
accept_list |
Def DA(l) == FinalState(DA)(Result(DA)l)
Thm* Alph,St:Type, A:Automata(Alph;St), l:Alph*. A(l) 
|
compute_list |
Def Result(DA)l
== if null(l) InitialState(DA) else DA((Result(DA)tl(l)),hd(l)) fi
(recursive)
Thm* Alph,St:Type, A:Automata(Alph;St), l:Alph*. (Result(A)l) St
|
finite |
Def Fin(s) == n: , f:( n s). Bij( n; s; f)
Thm* T:Type. Fin(T) Prop
|
biject |
Def Bij(A; B; f) == Inj(A; B; f) & Surj(A; B; f)
Thm* A,B:Type, f:(A B). Bij(A; B; f) Prop
|
inject |
Def Inj(A; B; f) == a1,a2:A. f(a1) = f(a2) B  a1 = a2
Thm* A,B:Type, f:(A B). Inj(A; B; f) Prop
|
lang_rel |
Def L-induced Equiv(x,y) == z:A*. L(z @ x)  L(z @ y)
Thm* A:Type, L:LangOver(A). L-induced Equiv A* A* Prop
|
one_one_corr |
Def A ~ B == f:(A B), g:(B A). InvFuns(A; B; f; g)
Thm* A,B:Type. (A ~ B) Prop
|
assert |
Def b == if b True else False fi
Thm* b: . b Prop
|
hd |
Def hd(l) == Case of l; nil "?" ; h.t h
Thm* A:Type, l:A*. ||l|| 1  hd(l) A
|
tl |
Def tl(l) == Case of l; nil nil ; h.t t
Thm* A:Type, l:A*. tl(l) A*
|
DA_act |
Def a == 1of(a)
Thm* Alph,States:Type, a:Automata(Alph;States). a States Alph States
|
DA_init |
Def InitialState(a) == 1of(2of(a))
Thm* Alph,States:Type, a:Automata(Alph;States). InitialState(a) States
|
null |
Def null(as) == Case of as; nil true ; a.as' false
Thm* T:Type, as:T*. null(as)
Thm* null(nil) 
|
int_seg |
Def {i..j } == {k: | i k < j }
Thm* m,n: . {m..n } Type
|
nat |
Def == {i: | 0 i }
Thm* Type
|
append |
Def as @ bs == Case of as; nil bs ; a.as' a.(as' @ bs) (recursive)
Thm* T:Type, as,bs:T*. (as @ bs) T*
|
iff |
Def P  Q == (P  Q) & (P  Q)
Thm* A,B:Prop. (A  B) Prop
|
inv_funs |
Def InvFuns(A; B; f; g) == g o f = Id & f o g = Id
Thm* A,B:Type, f:(A B), g:(B A). InvFuns(A; B; f; g) Prop
|
DA_fin |
Def FinalState(a) == 2of(2of(a))
Thm* Alph,States:Type, a:Automata(Alph;States). FinalState(a) States  
|
pi1 |
Def 1of(t) == t.1
Thm* A:Type, B:(A Type), p:a:A B(a). 1of(p) A
|
pi2 |
Def 2of(t) == t.2
Thm* A:Type, B:(A Type), p:a:A B(a). 2of(p) B(1of(p))
|
lelt |
Def i j < k == i j & j < k
|
surject |
Def Surj(A; B; f) == b:B. a:A. f(a) = b
Thm* A,B:Type, f:(A B). Surj(A; B; f) Prop
|
le |
Def A B == B < A
Thm* i,j: . i j Prop
|
rev_implies |
Def P  Q == Q  P
Thm* A,B:Prop. (A  B) Prop
|
tidentity |
Def Id == Id
Thm* A:Type. Id A A
|
compose |
Def (f o g)(x) == f(g(x))
Thm* A,B,C:Type, f:(B C), g:(A B). f o g A C
|
not |
Def A == A  False
Thm* A:Prop. ( A) Prop
|
identity |
Def Id(x) == x
Thm* A:Type. Id A A
|