| accept_list | Def DA(l)  == FinalState(DA)(Result(DA)l) Thm*  | 
| DA_fin | Def FinalState(a) == 2of(2of(a)) 
 Thm*  | 
| assert | Def  b == if b  True else False fi Thm*  | 
| automata | Def Automata(Alph;States) == (States   Alph   States)  States  (States    ) Thm*  | 
| compute_list | Def Result(DA)l
 == if null(l)  InitialState(DA) else  DA((Result(DA)tl(l)),hd(l)) fi
 (recursive) 
 Thm*  | 
| iff | Def P   Q == (P   Q)  &  (P   Q) Thm*  | 
| lang_auto | Def A(g) ==  < (  s,a. a.s),nil,g > 
 Thm*  | 
| DA_init | Def InitialState(a) == 1of(2of(a)) 
 Thm*  | 
| pi2 | Def 2of(t) == t.2 
 Thm*  | 
| hd | Def hd(l) == Case of l; nil  "?" ; h.t  h 
 Thm*  | 
| tl | Def tl(l) == Case of l; nil  nil ; h.t  t 
 Thm*  | 
| DA_act | Def  a == 1of(a) 
 Thm*  | 
| null | Def null(as) == Case of as; nil  true  ; a.as'  false   
 Thm*  
 Thm* null(nil)  | 
| rev_implies | Def P   Q == Q   P Thm*  | 
| pi1 | Def 1of(t) == t.1 Thm*  | 
About:
|  |  |  |  |  |  |  | 
|  |  |  |  |  |  |  | 
|  |  |  |  |  |  |  | 
|  |  |  |  |  |  |  |