auto_lang |
Def LangOf(DA)(l) == DA(l)
Thm* Alph,St:Type, A:Automata(Alph;St). LangOf(A) LangOver(Alph)
|
automata |
Def Automata(Alph;States) == (States Alph States) States (States  )
Thm* Alph,States:Type{i}. Automata(Alph;States) Type{i'}
|
lang_eq |
Def L = M == l:Alph*. L(l)  M(l)
Thm* Alph:Type{i}, L,M:LangOver(Alph). L = M Prop{i'}
|
lang_rel |
Def L-induced Equiv(x,y) == z:A*. L(z @ x)  L(z @ y)
Thm* A:Type, L:LangOver(A). L-induced Equiv A* A* Prop
|
accept_list |
Def DA(l) == FinalState(DA)(Result(DA)l)
Thm* Alph,St:Type, A:Automata(Alph;St), l:Alph*. A(l) 
|
assert |
Def b == if b True else False fi
Thm* b: . b Prop
|
iff |
Def P  Q == (P  Q) & (P  Q)
Thm* A,B:Prop. (A  B) Prop
|
append |
Def as @ bs == Case of as; nil bs ; a.as' a.(as' @ bs) (recursive)
Thm* T:Type, as,bs:T*. (as @ bs) T*
|
compute_list |
Def Result(DA)l
== if null(l) InitialState(DA) else DA((Result(DA)tl(l)),hd(l)) fi
(recursive)
Thm* Alph,St:Type, A:Automata(Alph;St), l:Alph*. (Result(A)l) St
|
DA_fin |
Def FinalState(a) == 2of(2of(a))
Thm* Alph,States:Type, a:Automata(Alph;States). FinalState(a) States  
|
rev_implies |
Def P  Q == Q  P
Thm* A,B:Prop. (A  B) Prop
|
hd |
Def hd(l) == Case of l; nil "?" ; h.t h
Thm* A:Type, l:A*. ||l|| 1  hd(l) A
|
tl |
Def tl(l) == Case of l; nil nil ; h.t t
Thm* A:Type, l:A*. tl(l) A*
|
DA_act |
Def a == 1of(a)
Thm* Alph,States:Type, a:Automata(Alph;States). a States Alph States
|
DA_init |
Def InitialState(a) == 1of(2of(a))
Thm* Alph,States:Type, a:Automata(Alph;States). InitialState(a) States
|
null |
Def null(as) == Case of as; nil true ; a.as' false
Thm* T:Type, as:T*. null(as)
Thm* null(nil) 
|
pi2 |
Def 2of(t) == t.2
Thm* A:Type, B:(A Type), p:a:A B(a). 2of(p) B(1of(p))
|
pi1 |
Def 1of(t) == t.1
Thm* A:Type, B:(A Type), p:a:A B(a). 1of(p) A
|