Thms automata 5 Sections AutomataTheory Doc

auto_iso Def A1 A2 == f:(S1S2). Bij(S1; S2; f) & (s:S1, a:Alph. f(A1(s,a)) = A2(f(s),a)) & f(InitialState(A1)) = InitialState(A2) & (s:S1. FinalState(A1)(s) = FinalState(A2)(f(s)) )

Thm* Alph,S1,S2:Type, A1:Automata(Alph;S1), A2:Automata(Alph;S2). A1 A2 Prop

DA_fin Def FinalState(a) == 2of(2of(a))

Thm* Alph,States:Type, a:Automata(Alph;States). FinalState(a) States

DA_init Def InitialState(a) == 1of(2of(a))

Thm* Alph,States:Type, a:Automata(Alph;States). InitialState(a) States

DA_act Def a == 1of(a)

Thm* Alph,States:Type, a:Automata(Alph;States). a StatesAlphStates

biject Def Bij(A; B; f) == Inj(A; B; f) & Surj(A; B; f)

Thm* A,B:Type, f:(AB). Bij(A; B; f) Prop

pi2 Def 2of(t) == t.2

Thm* A:Type, B:(AType), p:a:AB(a). 2of(p) B(1of(p))

pi1 Def 1of(t) == t.1

Thm* A:Type, B:(AType), p:a:AB(a). 1of(p) A

surject Def Surj(A; B; f) == b:B. a:A. f(a) = b

Thm* A,B:Type, f:(AB). Surj(A; B; f) Prop

inject Def Inj(A; B; f) == a1,a2:A. f(a1) = f(a2) B a1 = a2

Thm* A,B:Type, f:(AB). Inj(A; B; f) Prop

About:
!abstractionallimpliesequalapplyuniversefunction
memberpropexistsspreadproductandbool