PrintForm Definitions automata 5 Sections AutomataTheory Doc

At: homo is surj 1 1 3 1 1 1 2 1 1 1

1. Alph: Type
2. St: Type
3. Auto: Automata(Alph;St)
4. c: StAlph*
5. Fin(Alph) & Fin(St)
6. EquivRel x,y:Alph*. x LangOf(Auto)-induced Equiv y
7. h: Alph*Alph*
8. (x,y:Alph*. (x (x,y. x = y x,y:Alph*//(x LangOf(Auto)-induced Equiv y)) y) h(x) = h(y)) & (x:Alph*. x (x,y. x = y x,y:Alph*//(x LangOf(Auto)-induced Equiv y)) (h(x)))
9. b1: Alph*
10. b2: Alph*
11. b1 LangOf(Auto)-induced Equiv b2
12. (Result(Auto)c(Result(Auto)h(b1))) = (Result(Auto)h(b1))

c(Result(Auto)h(b1)) = b2 x,y:Alph*//(x LangOf(Auto)-induced Equiv y)

By: Reduce 8

Generated subgoal:

18. (x,y:Alph*. x = y x,y:Alph*//(x LangOf(Auto)-induced Equiv y) h(x) = h(y)) & (x:Alph*. x = h(x) x,y:Alph*//(x LangOf(Auto)-induced Equiv y))
9. b1: Alph*
10. b2: Alph*
11. b1 LangOf(Auto)-induced Equiv b2
12. (Result(Auto)c(Result(Auto)h(b1))) = (Result(Auto)h(b1))
c(Result(Auto)h(b1)) = b2 x,y:Alph*//(x LangOf(Auto)-induced Equiv y)


About:
equalquotientlistapplyuniverse
functionandalllambda