PrintForm Definitions automata 5 Sections AutomataTheory Doc

At: min auto con 1 1 1 3 1 2 1 1 1 1 1 2 1 1

1. Alph: Type
2. St: Type
3. Auto: Automata(Alph;St)
4. Fin(Alph) & Fin(St)
5. EquivRel x,y:Alph*. x LangOf(Auto)-induced Equiv y
6. h: Alph*Alph*
7. x,y:Alph*. x = y x,y:Alph*//(x LangOf(Auto)-induced Equiv y) h(x) = h(y)
8. x:Alph*. x = h(x) x,y:Alph*//(x LangOf(Auto)-induced Equiv y)
9. s1: Alph*
10. s2: Alph*
11. s1 LangOf(Auto)-induced Equiv s2
12. (s1 = s2 x,y:Alph*//(x LangOf(Auto)-induced Equiv y)) (h(s1) = h(s2))
13. h(s1) = h(s2)

(h(s2)) LangOf(Auto)-induced Equiv (h(s2))

By: Analyze 5

Generated subgoal:

15. Refl(Alph*;x,y.x LangOf(Auto)-induced Equiv y)
6. Sym x,y:Alph*. x LangOf(Auto)-induced Equiv y & Trans x,y:Alph*. x LangOf(Auto)-induced Equiv y
7. h: Alph*Alph*
8. x,y:Alph*. x = y x,y:Alph*//(x LangOf(Auto)-induced Equiv y) h(x) = h(y)
9. x:Alph*. x = h(x) x,y:Alph*//(x LangOf(Auto)-induced Equiv y)
10. s1: Alph*
11. s2: Alph*
12. s1 LangOf(Auto)-induced Equiv s2
13. (s1 = s2 x,y:Alph*//(x LangOf(Auto)-induced Equiv y)) (h(s1) = h(s2))
14. h(s1) = h(s2)
(h(s2)) LangOf(Auto)-induced Equiv (h(s2))


About:
applyuniverseandlistfunctionallequalquotient