automata 7 Sections AutomataTheory Doc

DA_fin Def FinalState(a) == 2of(2of(a))

Thm* Alph,States:Type, a:Automata(Alph;States). FinalState(a) States

compute_list Def Result(DA)l == if null(l) InitialState(DA) else DA((Result(DA)tl(l)),hd(l)) fi (recursive)

Thm* Alph,St:Type, A:Automata(Alph;St), l:Alph*. (Result(A)l) St

DA_init Def InitialState(a) == 1of(2of(a))

Thm* Alph,States:Type, a:Automata(Alph;States). InitialState(a) States

assert Def b == if b True else False fi

Thm* b:. b Prop

auto_action Def Action(Auto) == < St,a,s. Auto(s,a) >

Thm* Alph,St:Type, Auto:Automata(Alph;St). Action(Auto) ActionSet(Alph)

automata Def Automata(Alph;States) == (StatesAlphStates)States(States)

Thm* Alph,States:Type{i}. Automata(Alph;States) Type{i'}

finite Def Fin(s) == n:, f:(ns). Bij(n; s; f)

Thm* T:Type. Fin(T) Prop

biject Def Bij(A; B; f) == Inj(A; B; f) & Surj(A; B; f)

Thm* A,B:Type, f:(AB). Bij(A; B; f) Prop

int_seg Def {i..j} == {k:| i k < j }

Thm* m,n:. {m..n} Type

length Def ||as|| == Case of as; nil 0 ; a.as' ||as'||+1 (recursive)

Thm* A:Type, l:A*. ||l||

Thm* ||nil||

maction Def (S:Ls) == if null(L) s else S.act(hd(L),(S:tl(L)s)) fi (recursive)

Thm* Alph:Type, S:ActionSet(Alph), L:Alph*, s:S.car. (S:Ls) S.car

nat Def == {i:| 0i }

Thm* Type

aset_act Def a.act == 2of(a)

Thm* T:Type, a:ActionSet(T). a.act Ta.cara.car

pi2 Def 2of(t) == t.2

Thm* A:Type, B:(AType), p:a:AB(a). 2of(p) B(1of(p))

DA_act Def a == 1of(a)

Thm* Alph,States:Type, a:Automata(Alph;States). a StatesAlphStates

pi1 Def 1of(t) == t.1

Thm* A:Type, B:(AType), p:a:AB(a). 1of(p) A

surject Def Surj(A; B; f) == b:B. a:A. f(a) = b

Thm* A,B:Type, f:(AB). Surj(A; B; f) Prop

inject Def Inj(A; B; f) == a1,a2:A. f(a1) = f(a2) B a1 = a2

Thm* A,B:Type, f:(AB). Inj(A; B; f) Prop

hd Def hd(l) == Case of l; nil "?" ; h.t h

Thm* A:Type, l:A*. ||l||1 hd(l) A

tl Def tl(l) == Case of l; nil nil ; h.t t

Thm* A:Type, l:A*. tl(l) A*

null Def null(as) == Case of as; nil true ; a.as' false

Thm* T:Type, as:T*. null(as)

Thm* null(nil)

lelt Def i j < k == ij & j < k

le Def AB == B < A

Thm* i,j:. ij Prop

not Def A == A False

Thm* A:Prop. (A) Prop

About:
!abstractionimpliesfalseallpropmemberless_thanint
andlist_indbtruebfalseuniverselistboolnil
tokennatural_numberequalapplyfunctionexistsspreadproduct
setrecursive_def_noticeifthenelseaddpairlambdatrueassert