| | Some definitions of interest. |
|
| assert | Def b == if b True else False fi |
| | | Thm* b: . b Prop |
|
| eq_atom | Def x= y Atom == if x=y Atom true ; false fi |
| | | Thm* x,y:Atom. x= y Atom  |
|
| iff | Def P  Q == (P  Q) & (P  Q) |
| | | Thm* A,B:Prop. (A  B) Prop |
|
| nequal | Def a b T == a = b T |
| | | Thm* A:Type, x,y:A. (x y) Prop |
|
| not | Def A == A  False |
| | | Thm* A:Prop. ( A) Prop |