| Some definitions of interest. |
|
assert | Def b == if b True else False fi |
| | Thm* b:. b Prop |
|
eq_atom | Def x=yAtom == if x=yAtomtrue; false fi |
| | Thm* x,y:Atom. x=yAtom |
|
iff | Def P Q == (P Q) & (P Q) |
| | Thm* A,B:Prop. (A B) Prop |
|
nequal | Def a b T == a = b T |
| | Thm* A:Type, x,y:A. (x y) Prop |
|
not | Def A == A False |
| | Thm* A:Prop. (A) Prop |