| | Some definitions of interest. |
|
| assert | Def b == if b True else False fi |
| | | Thm* b: . b Prop |
|
| eq_bool | Def p= q == (p q)  ( p   q) |
| | | Thm* p,q: . p= q  |
|
| band | Def p q == if p q else false fi |
| | | Thm* p,q: . (p q)  |
|
| bnot | Def  b == if b false else true fi |
| | | Thm* b: .  b  |
|
| bor | Def p  q == if p true else q fi |
| | | Thm* p,q: . (p  q)  |
|
| iff | Def P  Q == (P  Q) & (P  Q) |
| | | Thm* A,B:Prop. (A  B) Prop |