assert |
Def b == if b True else False fi
Thm* b: . b Prop
|
equiv_rel |
Def EquivRel x,y:T. E(x;y)
== Refl(T;x,y.E(x;y)) & Sym x,y:T. E(x;y) & Trans x,y:T. E(x;y)
Thm* T:Type, E:(T T Prop). (EquivRel x,y:T. E(x,y)) Prop
|
iff |
Def P  Q == (P  Q) & (P  Q)
Thm* A,B:Prop. (A  B) Prop
|
trans |
Def Trans x,y:T. E(x;y) == a,b,c:T. E(a;b)  E(b;c)  E(a;c)
Thm* T:Type, E:(T T Prop). Trans x,y:T. E(x,y) Prop
|
sym |
Def Sym x,y:T. E(x;y) == a,b:T. E(a;b)  E(b;a)
Thm* T:Type, E:(T T Prop). Sym x,y:T. E(x,y) Prop
|
refl |
Def Refl(T;x,y.E(x;y)) == a:T. E(a;a)
Thm* T:Type, E:(T T Prop). Refl(T;x,y.E(x,y)) Prop
|
rev_implies |
Def P  Q == Q  P
Thm* A,B:Prop. (A  B) Prop
|