Thms det automata Sections AutomataTheory Doc

DA_act Def a == 1of(a)

Thm* Alph,States:Type, a:Automata(Alph;States). a StatesAlphStates

action_set Def ActionSet(T) == car:TypeTcarcar

Thm* T:Type{i}. ActionSet(T) Type{i'}

automata Def Automata(Alph;States) == (StatesAlphStates)States(States)

Thm* Alph,States:Type{i}. Automata(Alph;States) Type{i'}

finite Def Fin(s) == n:, f:(ns). Bij(n; s; f)

Thm* T:Type. Fin(T) Prop

tlambda Def (x:T. b(x))(x) == b(x)

pi1 Def 1of(t) == t.1

Thm* A:Type, B:(AType), p:a:AB(a). 1of(p) A

int_seg Def {i..j} == {k:| i k < j }

Thm* m,n:. {m..n} Type

biject Def Bij(A; B; f) == Inj(A; B; f) & Surj(A; B; f)

Thm* A,B:Type, f:(AB). Bij(A; B; f) Prop

nat Def == {i:| 0i }

Thm* Type

lelt Def i j < k == ij & j < k

surject Def Surj(A; B; f) == b:B. a:A. f(a) = b

Thm* A,B:Type, f:(AB). Surj(A; B; f) Prop

inject Def Inj(A; B; f) == a1,a2:A. f(a1) = f(a2) B a1 = a2

Thm* A,B:Type, f:(AB). Inj(A; B; f) Prop

le Def AB == B < A

Thm* i,j:. ij Prop

not Def A == A False

Thm* A:Prop. (A) Prop

About:
!abstractionimpliesfalseallpropmemberless_than
intequalapplyuniversefunctionexistsand
setnatural_numberspreadproductbool