DA_act |
Def a == 1of(a)
Thm* Alph,States:Type, a:Automata(Alph;States). a States Alph States
|
action_set |
Def ActionSet(T) == car:Type T car car
Thm* T:Type{i}. ActionSet(T) Type{i'}
|
automata |
Def Automata(Alph;States) == (States Alph States) States (States  )
Thm* Alph,States:Type{i}. Automata(Alph;States) Type{i'}
|
finite |
Def Fin(s) == n: , f:( n s). Bij( n; s; f)
Thm* T:Type. Fin(T) Prop
|
tlambda |
Def ( x:T. b(x))(x) == b(x)
|
pi1 |
Def 1of(t) == t.1
Thm* A:Type, B:(A Type), p:a:A B(a). 1of(p) A
|
int_seg |
Def {i..j } == {k: | i k < j }
Thm* m,n: . {m..n } Type
|
biject |
Def Bij(A; B; f) == Inj(A; B; f) & Surj(A; B; f)
Thm* A,B:Type, f:(A B). Bij(A; B; f) Prop
|
nat |
Def == {i: | 0 i }
Thm* Type
|
lelt |
Def i j < k == i j & j < k
|
surject |
Def Surj(A; B; f) == b:B. a:A. f(a) = b
Thm* A,B:Type, f:(A B). Surj(A; B; f) Prop
|
inject |
Def Inj(A; B; f) == a1,a2:A. f(a1) = f(a2) B  a1 = a2
Thm* A,B:Type, f:(A B). Inj(A; B; f) Prop
|
le |
Def A B == B < A
Thm* i,j: . i j Prop
|
not |
Def A == A  False
Thm* A:Prop. ( A) Prop
|