 0 ; a.as'
 0 ; a.as'  ||as'||+1  (recursive)
 ||as'||+1  (recursive)
 Thm*  S:ActionSet(Alph), si:S.car, nn:
S:ActionSet(Alph), si:S.car, nn: , f:(
, f:( nn
nn
 Alph), g:(Alph
Alph), g:(Alph

 nn).
 Fin(S.car)
nn).
 Fin(S.car) 
 InvFuns(
 
 InvFuns( nn; Alph; f; g)
nn; Alph; f; g) 
 (
 
 ( n:
n: .
. 
  RL:{y:{x:(S.car*)| 0 < ||x||  &  ||x||
RL:{y:{x:(S.car*)| 0 < ||x||  &  ||x|| n+1 }| y[(||y||-1)] = si }. 
 (
n+1 }| y[(||y||-1)] = si }. 
 ( s:S.car. (
s:S.car. ( w:Alph*. (S:w
w:Alph*. (S:w si) = s)
si) = s) 
 mem_f(S.car;s;RL))
 mem_f(S.car;s;RL))
  ||RL|| = n+1
  &  (
 ||RL|| = n+1
  &  ( i:
i: ||RL||, j:
||RL||, j: i.
i.  RL[i] = RL[j])
  &  (
RL[i] = RL[j])
  &  ( s:S.car. mem_f(S.car;s;RL)
s:S.car. mem_f(S.car;s;RL) 
 (
 ( w:Alph*. (S:w
w:Alph*. (S:w si) = s))
  &  (
si) = s))
  &  ( k:
k: . 
 k
. 
 k nn
nn 
 (
 
 ( RLa:S.car*. 
 (
RLa:S.car*. 
 ( i:{1..||RL||
i:{1..||RL|| }, a:Alph.
 mem_f(S.car;S.act(a,RL[i]);RL)
}, a:Alph.
 mem_f(S.car;S.act(a,RL[i]);RL)  mem_f(S.car;S.act(a,RL[i]);RLa))
  &  (
 mem_f(S.car;S.act(a,RL[i]);RLa))
  &  ( a:Alph. 
 g(a) < k
a:Alph. 
 g(a) < k 
 mem_f(S.car;S.act(a,hd(RL));RL)
 
 mem_f(S.car;S.act(a,hd(RL));RL)  mem_f(S.car;S.act(a,hd(RL));RLa))
  &  (
 mem_f(S.car;S.act(a,hd(RL));RLa))
  &  ( s:S.car. mem_f(S.car;s;RLa)
s:S.car. mem_f(S.car;s;RLa) 
 (
 ( w:Alph*. (S:w
w:Alph*. (S:w si) = s)))))
 
 reach_lemma
si) = s)))))
 
 reach_lemma
In prior sections: list 1 finite sets list 3 autom action sets