PrintForm
Definitions
det
automata
Sections
AutomataTheory
Doc
At:
reach
aux
1
1
1
1
2
1.
Alph:
Type
2.
S:
ActionSet(Alph)
3.
si:
S.car
4.
Fin(S.car)
5.
n:
6.
f:
n
Alph
7.
g:
Alph
n
8.
InvFuns(
n; Alph; f; g)
9.
n1:
10.
f1:
n1
S.car
11.
g1:
S.car
n1
12.
InvFuns(
n1; S.car; f1; g1)
13.
RL:
{y:{x:(S.car*)| 0 < ||x|| & ||x||
n1+1 }| y[(||y||-1)] = si }
14.
||RL|| = n1+1
15.
i:
||RL||, j:
i.
RL[i] = RL[j]
16.
s:S.car. mem_f(S.car;s;RL)
(
w:Alph*. (S:w
si) = s)
17.
k:
. k
n
(
RLa:S.car*. (
i:{1..||RL||
}, a:Alph. mem_f(S.car;S.act(a,RL[i]);RL)
mem_f(S.car;S.act(a,RL[i]);RLa)) & (
a:Alph. g(a) < k
mem_f(S.car;S.act(a,hd(RL));RL)
mem_f(S.car;S.act(a,hd(RL));RLa)) & (
s:S.car. mem_f(S.car;s;RLa)
(
w:Alph*. (S:w
si) = s)))
RL:S.car*.
s:S.car. (
w:Alph*. (S:w
si) = s)
mem_f(S.car;s;RL)
By:
Thin -1
THEN
Inst
Thm*
n:{1...}, f:(
(n+1)
n).
i:
(n+1), j:
i. f(i) = f(j) [n1;
x.g1(RL[x])]
THEN
ExRepD
Generated subgoals:
1
1
n1
2
17.
i:
(n1+1)
18.
j:
i
19.
(
x.g1(RL[x]))(i) = (
x.g1(RL[x]))(j)
n1
RL:S.car*.
s:S.car. (
w:Alph*. (S:w
si) = s)
mem_f(S.car;s;RL)
About: