PrintForm
Definitions
det
automata
Sections
AutomataTheory
Doc
At:
reach
lemma
1
1
1.
Alph:
Type
2.
S:
ActionSet(Alph)
3.
si:
S.car
4.
nn:
5.
f:
nn
Alph
6.
g:
Alph
nn
7.
Fin(S.car)
8.
InvFuns(
nn; Alph; f; g)
RL:{y:{x:(S.car*)| 0 < ||x|| & ||x||
0+1 }| y[(||y||-1)] = si }. (
s:S.car. (
w:Alph*. (S:w
si) = s)
mem_f(S.car;s;RL))
||RL|| = 0+1 & (
i:
||RL||, j:
i.
RL[i] = RL[j]) & (
s:S.car. mem_f(S.car;s;RL)
(
w:Alph*. (S:w
si) = s)) & (
k:
. k
nn
(
RLa:S.car*. (
i:{1..||RL||
}, a:Alph. mem_f(S.car;S.act(a,RL[i]);RL)
mem_f(S.car;S.act(a,RL[i]);RLa)) & (
a:Alph. g(a) < k
mem_f(S.car;S.act(a,hd(RL));RL)
mem_f(S.car;S.act(a,hd(RL));RLa)) & (
s:S.car. mem_f(S.car;s;RLa)
(
w:Alph*. (S:w
si) = s))))
By:
InstConcl [[si]]
THEN
Sel 2 (Analyze 0)
Generated subgoals:
1
[si]
{y:{x:(S.car*)| 0 < ||x|| & ||x||
0+1 }| y[(||y||-1)] = si }
2
||[si]|| = 0+1 & (
i:
||[si]||, j:
i.
[si][i] = [si][j]) & (
s:S.car. mem_f(S.car;s;[si])
(
w:Alph*. (S:w
si) = s)) & (
k:
. k
nn
(
RLa:S.car*. (
i:{1..||[si]||
}, a:Alph. mem_f(S.car;S.act(a,[si][i]);[si])
mem_f(S.car;S.act(a,[si][i]);RLa)) & (
a:Alph. g(a) < k
mem_f(S.car;S.act(a,hd([si]));[si])
mem_f(S.car;S.act(a,hd([si]));RLa)) & (
s:S.car. mem_f(S.car;s;RLa)
(
w:Alph*. (S:w
si) = s))))
3
9.
RL:
{y:{x:(S.car*)| 0 < ||x|| & ||x||
0+1 }| y[(||y||-1)] = si }
10.
k:
11.
k
nn
12.
RLa:
S.car*
13.
a:
Alph
14.
g(a) < k
||RL||
1
4
9.
RL:
{y:{x:(S.car*)| 0 < ||x|| & ||x||
0+1 }| y[(||y||-1)] = si }
10.
k:
11.
k
nn
12.
RLa:
S.car*
13.
a:
Alph
14.
g(a) < k
||RL||
1
About: