PrintForm Definitions det automata Sections AutomataTheory Doc

At: reach lemma 1 2 1

1. Alph: Type
2. S: ActionSet(Alph)
3. si: S.car
4. nn:
5. f: nnAlph
6. g: Alphnn
7. Fin(S.car)
8. InvFuns(nn; Alph; f; g)
9. n:
10. 0 < n
11. RL: {y:{x:(S.car*)| 0 < ||x|| & ||x||n-1+1 }| y[(||y||-1)] = si }
12. s:S.car. (w:Alph*. (S:wsi) = s) mem_f(S.car;s;RL)

RL:{y:{x:(S.car*)| 0 < ||x|| & ||x||n+1 }| y[(||y||-1)] = si }. (s:S.car. (w:Alph*. (S:wsi) = s) mem_f(S.car;s;RL)) ||RL|| = n+1 & (i:||RL||, j:i. RL[i] = RL[j]) & (s:S.car. mem_f(S.car;s;RL) (w:Alph*. (S:wsi) = s)) & (k:. knn (RLa:S.car*. (i:{1..||RL||}, a:Alph. mem_f(S.car;S.act(a,RL[i]);RL) mem_f(S.car;S.act(a,RL[i]);RLa)) & (a:Alph. g(a) < k mem_f(S.car;S.act(a,hd(RL));RL) mem_f(S.car;S.act(a,hd(RL));RLa)) & (s:S.car. mem_f(S.car;s;RLa) (w:Alph*. (S:wsi) = s))))

By: InstConcl [RL]

Generated subgoals:

111. RL: S.car*
12. 0 < ||RL||
13. ||RL||n-1+1
14. RL[(||RL||-1)] = si
15. s:S.car. (w:Alph*. (S:wsi) = s) mem_f(S.car;s;RL)
16. y: {x:(S.car*)| 0 < ||x|| & ||x||n+1 }
0||y||-1
2 (s:S.car. (w:Alph*. (S:wsi) = s) mem_f(S.car;s;RL)) ||RL|| = n+1 & (i:||RL||, j:i. RL[i] = RL[j]) & (s:S.car. mem_f(S.car;s;RL) (w:Alph*. (S:wsi) = s)) & (k:. knn (RLa:S.car*. (i:{1..||RL||}, a:Alph. mem_f(S.car;S.act(a,RL[i]);RL) mem_f(S.car;S.act(a,RL[i]);RLa)) & (a:Alph. g(a) < k mem_f(S.car;S.act(a,hd(RL));RL) mem_f(S.car;S.act(a,hd(RL));RLa)) & (s:S.car. mem_f(S.car;s;RLa) (w:Alph*. (S:wsi) = s))))
313. R1: {y:{x:(S.car*)| 0 < ||x|| & ||x||n+1 }| y[(||y||-1)] = si }
14. k:
15. knn
16. RLa: S.car*
17. a: Alph
18. g(a) < k
||R1||1
413. R1: {y:{x:(S.car*)| 0 < ||x|| & ||x||n+1 }| y[(||y||-1)] = si }
14. k:
15. knn
16. RLa: S.car*
17. a: Alph
18. g(a) < k
||R1||1


About:
existssetlistandless_thannatural_numberaddequal
subtractorallintimpliesapplyuniversefunction