PrintForm Definitions det automata Sections AutomataTheory Doc

At: reach list 1 4

1. Alph: Type
2. St: Type
3. Auto: Automata(Alph;St)
4. Fin(St)
5. Fin(Alph)
6. RL: < St,a:Alph. s:St. Auto(s,a) > .car*. s: < St,a:Alph. s:St. Auto(s,a) > .car. (w:Alph*. ( < St,a:Alph. s:St. Auto(s,a) > :wInitialState(Auto)) = s) mem_f( < St,a:Alph. s:St. Auto(s,a) > .car;s;RL)

RL:St*. s:St. (w:Alph*. (Result(Auto)w) = s) mem_f(St;s;RL)

By:
Unfold `aset_car` -1
THEN
Reduce -1


Generated subgoal:

16. RL:St*. s:St. (w:Alph*. ( < St,a:Alph. s:St. Auto(s,a) > :wInitialState(Auto)) = s) mem_f(St;s;RL)
RL:St*. s:St. (w:Alph*. (Result(Auto)w) = s) mem_f(St;s;RL)


About:
existslistallequaluniversepairapply