is mentioned by
[card_st_vs_boolsize] | |
[boolsize_wf] | |
Thm* IsEqFun(B;e) Thm* Thm* (a:, f:(a onto B). (y.least x:. (f(x)) e y) B inj a) | [nsub_surj_imp_a_rev_inj_gen] |
[nsub_bool] | |
[ifthenelse_distr_subtype_ooc] | |
Thm* IsEqFun(B;e) (a:, f:(a onto B), y:B. f(least x:. (f(x)) e y) = y) | [nsub_surj_least_preimage_works_gen] |
Thm* IsEqFun(B;e) (a:, f:(a onto B), y:B. (least x:. (f(x)) e y) a) | [nsub_surj_least_preimage_total_gen] |
[least_satisfies2] | |
[least_is_least2] | |
[least_is_least] | |
[least_satisfies] | |
[least_wf2] | |
Thm* (least i:. p(i)) {i:| p(i) & (j:. j<i p(j)) } | [least_characterized2] |
[least_wf] | |
Thm* (least i:. p(i)) {i:k| p(i) & (j:i. p(j)) } | [least_characterized] |
Thm* (Replace values x s.t. P(x) by y in f) XA | [replace_fn_values_wf] |
[sized_bool] |
In prior sections: bool 1 rel 1 quot 1 LogicSupplement SimpleMulFacts
Try larger context:
DiscrMathExt
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html