DiscreteMath Sections DiscrMathExt Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Def   == Unit+Unit

is mentioned by

Thm*  p:(a). {x:ap(x) } ~ (size(a)(p))[card_st_vs_boolsize]
Thm*  a:size(a (a)[boolsize_wf]
Thm*  e:(BB). 
Thm*  IsEqFun(B;e)
Thm*  
Thm*  (a:f:(a onto B). (y.least x:. (f(x)) e y B inj a)
[nsub_surj_imp_a_rev_inj_gen]
Thm*   ~ 2[nsub_bool]
Thm*  {x:A| if b P(x) else Q(x) fi } ~ if b {x:AP(x) } else {x:AQ(x) } fi[ifthenelse_distr_subtype_ooc]
Thm*  e:(BB). 
Thm*  IsEqFun(B;e (a:f:(a onto B), y:Bf(least x:. (f(x)) e y) = y)
[nsub_surj_least_preimage_works_gen]
Thm*  e:(BB). 
Thm*  IsEqFun(B;e (a:f:(a onto B), y:B. (least x:. (f(x)) e y a)
[nsub_surj_least_preimage_total_gen]
Thm*  p:{p:()| i:p(i) }. p(least i:p(i))[least_satisfies2]
Thm*  p:{p:()| i:p(i) }, j:(least i:p(i)). p(j)[least_is_least2]
Thm*  k:p:{p:(k)| i:kp(i) }, j:(least i:p(i)). p(j)[least_is_least]
Thm*  k:p:{p:(k)| i:kp(i) }. p(least i:p(i))[least_satisfies]
Thm*  p:{p:()| i:p(i) }. (least i:p(i))  [least_wf2]
Thm*  p:{p:()| i:p(i) }. 
Thm*  (least i:p(i))  {i:p(i) & (j:j<i  p(j)) }
[least_characterized2]
Thm*  k:p:{p:(k)| i:kp(i) }. (least i:p(i))  k[least_wf]
Thm*  k:p:{p:(k)| i:kp(i) }.
Thm*  (least i:p(i))  {i:kp(i) & (j:ip(j)) }
[least_characterized]
Thm*  A,X:Type, P:(A), y:Af:(XA).
Thm*  (Replace values x s.t. P(x) by y in f XA
[replace_fn_values_wf]
Def  a {k}  == {p:(a)| size(a)(p) = k }[sized_bool]

In prior sections: bool 1 rel 1 quot 1 LogicSupplement SimpleMulFacts

Try larger context: DiscrMathExt IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

DiscreteMath Sections DiscrMathExt Doc