(8steps total)
PrintForm
Definitions
Lemmas
DiscreteMath
Sections
DiscrMathExt
Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Computing the inverse of a finite function
At:
nsub
surj
least
preimage
total
gen
B
:Type,
e
:(
B
B
).
IsEqFun(
B
;
e
)
(
a
:
,
f
:(
a
onto
B
),
y
:
B
. (least
x
:
. (
f
(
x
))
e
y
)
a
)
By:
UnivCD
Generated subgoal:
1
1.
B
: Type
2.
e
:
B
B
3. IsEqFun(
B
;
e
)
4.
a
:
5.
f
:
a
onto
B
6.
y
:
B
(least
x
:
. (
f
(
x
))
e
y
)
a
7
steps
About:
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
(8steps total)
PrintForm
Definitions
Lemmas
DiscreteMath
Sections
DiscrMathExt
Doc