Thm* f:( a bij a). InvFuns( a; a;f; y.least x: . f(x)= y) | [nsub_bij_least_preimage_inverse] |
Thm* f:( a onto b). ( y.least x: . f(x)= y) b inj a | [nsub_surj_imp_a_rev_inj] |
Thm* (A+B) ~ (i: 2 if i= 0 A else B fi) | [card_union_vs_sigma] |
Thm* InvFuns(A+B;i: 2 if i= 0 A else B fi;union_to_sigma;sigma_to_union) | [union_sigma_inverses] |
Thm* A,B:Type. sigma_to_union (i: 2 if i= 0 A else B fi) (A+B) | [sigma_to_union_wf] |
Thm* A,B:Type. union_to_sigma (A+B) (i: 2 if i= 0 A else B fi) | [union_to_sigma_wf] |
Thm* Dec(P)  ( !i: 2. if i= 0 P else P fi) | [decidable_vs_unique_nsub2] |
Thm* f:( a onto b), y: b. f(least x: . f(x)= y) = y | [nsub_surj_least_preimage_works] |
Thm* f:( a onto b), y: b. (least x: . f(x)= y) a | [nsub_surj_least_preimage_total] |
Thm* a: , b: , j: b, f:( (a-1) inj {x: b| x = j }).
Thm* ( i.if i= a-1 j else f(i) fi) a inj b | [nsub_inj_fill_typing] |
Thm* IsEqFun( b; i,j. i= j) | [eq_int_is_eq_nsub] |
Def prev_nat_pair(xy) == xy/x,y. if x= 0 <y-1,0> else <x-1,y+1> fi | [prev_nat_pair] |
Def next_nat_pair(xy) == xy/x,y. if y= 0 <0,x+1> else <x+1,y-1> fi | [next_nat_pair] |
Def [x/ xs](i) == if i= 0 x else xs(i-1) fi | [seq_cons] |
Def sigma_to_union(e) == e/i,u. if i= 0 inl(u) else inr(u) fi | [sigma_to_union] |
Def f{ i}(x) == if i= 0 x else f(f{ i-1}(x)) fi (recursive) | [compose_iter] |
Def Replace value k by f(m) in f == Replace values x s.t. x= k by f(m) in f | [delete_fenum_value] |