PrintForm
Definitions
Lemmas
DiscreteMath
Sections
DiscrMathExt
Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Computing the inverse of a finite function
At:
nsub
surj
least
preimage
total
b
,
a
:
,
f
:(
a
onto
b
),
y
:
b
. (least
x
:
.
f
(
x
)=
y
)
a
By:
Analyze
THEN
Use:[
B
:=
b
|
e
(
i
,
j
):=
i
=
j
]
Inst:
Thm*
e
:(
B
B
).
Thm*
IsEqFun(
B
;
e
)
(
a
:
,
f
:(
a
onto
B
),
y
:
B
. (least
x
:
. (
f
(
x
))
e
y
)
a
)
THEN
BackThru:
Thm*
IsEqFun(
b
;
i
,
j
.
i
=
j
)
Generated subgoals:
None
About:
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
PrintForm
Definitions
Lemmas
DiscreteMath
Sections
DiscrMathExt
Doc