| Some definitions of interest. |
|
eq_int | Def i= j == if i=j true ; false fi |
|
| Thm* i,j: . (i= j)  |
|
eqfun_p | Def IsEqFun(T;eq) == x,y:T. (x eq y)  x = y |
|
| Thm* T:Type, eq:(T T  ). IsEqFun(T;eq) Prop |
|
int_seg | Def {i..j } == {k: | i k < j } |
|
| Thm* m,n: . {m..n } Type |
|
least | Def least i: . p(i) == if p(0) 0 else (least i: . p(i+1))+1 fi (recursive) |
|
| Thm* k: , p:{p:( k  )| i: k. p(i) }. (least i: . p(i)) k |
|
| Thm* p:{p:(   )| i: . p(i) }. (least i: . p(i))  |
|
nat | Def == {i: | 0 i } |
|
| Thm* Type |
|
so_lambda2 | Def ( 1,2. b(1;2))(1,2) == b(1;2) |
|
surjection_type | Def A onto B == {f:(A B)| Surj(A; B; f) } |
|
| Thm* A,B:Type. A onto B Type |