| Some definitions of interest. |
|
eq_int | Def i= j == if i=j true ; false fi |
| | Thm* i,j: . (i= j) ![](FONT/bool.png) |
|
eqfun_p | Def IsEqFun(T;eq) == x,y:T. (x eq y) ![](FONT/if_big.png) x = y |
| | Thm* T:Type, eq:(T![](FONT/dash.png) T![](FONT/dash.png) ![](FONT/then_med.png) ). IsEqFun(T;eq) Prop |
|
int_seg | Def {i..j } == {k: | i k < j } |
| | Thm* m,n: . {m..n } Type |
|
nat | Def == {i: | 0 i } |
| | Thm* Type |
|
so_lambda2 | Def (![](FONT/lam.png) 1,2. b(1;2))(1,2) == b(1;2) |