Definitions DiscreteMath Sections DiscrMathExt Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
eq_intDef  i=j == if i=j true ; false fi
Thm*  i,j:. (i=j 
eqfun_pDef  IsEqFun(T;eq) == x,y:T(x eq y x = y
Thm*  T:Type, eq:(TT). IsEqFun(T;eq Prop
int_segDef  {i..j} == {k:i  k < j }
Thm*  m,n:. {m..n Type
natDef   == {i:| 0i }
Thm*    Type
so_lambda2Def  (1,2b(1;2))(1,2) == b(1;2)

About:
boolbfalsebtrueintnatural_numberint_eqset
applyfunctionuniverseequalmemberpropall!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions DiscreteMath Sections DiscrMathExt Doc