| | Some definitions of interest. |
|
| eq_int | Def i= j == if i=j true ; false fi |
| | | Thm* i,j: . (i= j)  |
|
| eqfun_p | Def IsEqFun(T;eq) == x,y:T. (x eq y)  x = y |
| | | Thm* T:Type, eq:(T T  ). IsEqFun(T;eq) Prop |
|
| int_seg | Def {i..j } == {k: | i k < j } |
| | | Thm* m,n: . {m..n } Type |
|
| nat | Def == {i: | 0 i } |
| | | Thm* Type |
|
| so_lambda2 | Def ( 1,2. b(1;2))(1,2) == b(1;2) |