Definitions DiscreteMath Sections DiscrMathExt Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
eq_intDef  i=j == if i=j true ; false fi
Thm*  i,j:. (i=j 
injection_typeDef  A inj B == {f:(AB)| Inj(ABf) }
Thm*  A,B:Type. A inj B  Type
int_segDef  {i..j} == {k:i  k < j }
Thm*  m,n:. {m..n Type
natDef   == {i:| 0i }
Thm*    Type
nat_plusDef   == {i:| 0<i }
Thm*    Type
notDef  A == A  False
Thm*  A:Prop. (A Prop

About:
boolbfalsebtrueintnatural_numberint_eqless_thanset
functionuniversememberpropimpliesfalseall!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions DiscreteMath Sections DiscrMathExt Doc