| Some definitions of interest. |
|
bijection_type | Def A bij B == {f:(AB)| Bij(A; B; f) } |
| | Thm* A,B:Type. A bij B Type |
|
isect_two | Def AB == i:2. if i=0 A else B fi |
| | Thm* A,B:Type. AB Type |
|
eq_int | Def i=j == if i=j true ; false fi |
| | Thm* i,j:. (i=j) |
|
injection_type | Def A inj B == {f:(AB)| Inj(A; B; f) } |
| | Thm* A,B:Type. A inj B Type |
|
inject | Def Inj(A; B; f) == a1,a2:A. f(a1) = f(a2) B a1 = a2 |
| | Thm* A,B:Type, f:(AB). Inj(A; B; f) Prop |
|
int_seg | Def {i..j} == {k:| i k < j } |
| | Thm* m,n:. {m..n} Type |
|
surjection_type | Def A onto B == {f:(AB)| Surj(A; B; f) } |
| | Thm* A,B:Type. A onto B Type |
|
surject | Def Surj(A; B; f) == b:B. a:A. f(a) = b |
| | Thm* A,B:Type, f:(AB). Surj(A; B; f) Prop |