Definitions DiscreteMath Sections DiscrMathExt Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
bijection_typeDef  A bij B == {f:(AB)| Bij(ABf) }
Thm*  A,B:Type. A bij B  Type
bijectDef  Bij(ABf) == Inj(ABf) & Surj(ABf)
Thm*  A,B:Type, f:(AB). Bij(ABf Prop
eq_intDef  i=j == if i=j true ; false fi
Thm*  i,j:. (i=j 
injectDef  Inj(ABf) == a1,a2:Af(a1) = f(a2 B  a1 = a2
Thm*  A,B:Type, f:(AB). Inj(ABf Prop
int_segDef  {i..j} == {k:i  k < j }
Thm*  m,n:. {m..n Type
surjectDef  Surj(ABf) == b:Ba:Af(a) = b
Thm*  A,B:Type, f:(AB). Surj(ABf Prop

About:
boolbfalsebtrueintint_eqsetapplyfunction
universeequalmemberpropimpliesandallexists
!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions DiscreteMath Sections DiscrMathExt Doc